Multiobjective Optimization of a Quadruped Robot Locomotion using a Genetic Algorithm
نویسندگان
چکیده
In this work, it is described a gait multiobjective optimization system that allows to obtain fast but stable robot quadruped crawl gaits. We combine bioinspired Central Patterns Generators (CPGs) and Genetic Algorithms (GA). A motion architecture based on CPGs oscillators is used to model the locomotion of the robot dog and a GA is used to search parameterizations of the CPGs parameters which minimize the body vibration, maximize the velocity and maximize the wide stability margin. In this problem, there are several conflicting objectives that leads to a multiobjective formulation that is solved using the Weighted Tchebycheff scalarization method. Several experimental results show the effectiveness of this proposed approach.
منابع مشابه
Locomotion Control for Electrically Powered Quadruped Robot Dynarobin
This paper presents the methodology used for finding the optimal set of foot trajectories for a quadruped robot using manual tuning and multiobjective genetic algorithm optimization that provide energy efficient and fast locomotion. Manual trajectory tuning is used to obtain initial set of trajectories for the multiobjective GA optimization. The multiobjective optimization evaluates the energy ...
متن کاملOptimal Trajectory Generation for a Robotic Worm via Parameterization by B-Spline Curves
In this paper we intend to generate some set of optimal trajectories according to the number of control points has been applied for parameterizing those using B-spline curves. The trajectories are used to generate an optimal locomotion gait in a crawling worm-like robot. Due to gait design considerations it is desired to minimize the required torques in a cycle of gait. Similar to caterpillars,...
متن کاملQuadruped Robot Locomotion using a Global Optimization Stochastic Algorithm
The problem of tuning nonlinear dynamical systems parameters, such that the attained results are considered good ones, is a relevant one. This article describes the development of a gait optimization system that allows a fast but stable robot quadruped crawl gait. We combine bio-inspired Central Patterns Generators (CPGs) and Genetic Algorithms (GA). CPGs are modelled as autonomous differential...
متن کاملDynamics modeling and stable gait planning of a quadruped robot in walking over uneven terrains
Quadruped robots have unique capabilities for motion over uneven natural environments. This article presents a stable gait for a quadruped robot in such motions and discusses the inverse-dynamics control scheme to follow the planned gait. First, an explicit dynamics model will be developed using a novel constraint elimination method for an 18-DOF quadruped robot. Thereafter, an inverse-dynamics...
متن کاملA Global Optimization Stochastic Algorithm for Head Motion Stabilization during Quadruped Robot Locomotion
Visually-guided locomotion is important for autonomous robotics. However, there are several difficulties, for instance, the robot locomotion induces head shaking that constraints stable image acquisition and the possibility to rely on that information to act accordingly. In this work, we propose a combined approach based on a controller architecture that is able to generate locomotion for a qua...
متن کامل